lunes, 12 de mayo de 2014

El enlace Covalente en los Compuestos Orgánicos



Orbitales atómicos.
En química general suele estudiarse detenidamente el concepto de orbital, por tanto bastará con recordar que orbital es una región tridimensional alrededor del núcleo atómico donde existe mayor probabilidad de encontrar un electrón. El principio de incertidumbre de Heisenberg indica que la posición y el momento de un electrón no pueden conocerse simultáneamente. Esto significa que nunca podemos saber con total certeza donde se encuentra el electrón pero sí podemos describir su posible localización. El contorno orbitálico indica la existencia de más de un 90% probabilidad de encontrar al electrón en el espacio definido por dicho contorno.  Según la mecánica cuántica, los electrones se colocan en regiones concéntricas al núcleo. Cada región, o nivel, contiene subregiones que son los orbitales atómicos. Cada orbital atómico tiene una energía característica que viene dada por la ecuación de Schrödinger. Así, la primera región contiene sólo al orbital s y consiste en una región esférica en cuyo centro se encuentra el núcleo




La segunda región contiene 1 orbital s (esférico) y 3 orbitales p, que son mutuamente perpendiculares entre sí. En la siguiente figura se indica la forma de cada uno de los orbitales 2p.



El tercer nivel cuántico posee 1 orbital s, 3 orbitales p y 5 orbitales d, cuya forma y orientación se da en la siguiente figura:


El cuarto nivel cuántico contiene 1 orbital s, 3 orbitales p, 5 orbitales d y 7 orbitales f.


Teoría de orbitales moleculares (OM)
Según la teoría de orbitales moleculares (OM), los enlaces covalentes de las moléculas se forman por solapamiento de orbitales atómicos, de manera que los nuevos orbitales moleculares pertenecen a la molécula entera y no a un átomo sólo.  Para comprender mejor esta teoría describiremos primero el enlace en una molécula de H2.


En esta molécula el orbital 1s de uno de los átomos de hidrógeno se solapa con el orbital 1s del otro hidrógeno formándose un orbital molecular. La densidad electrónica del OM es mayor en la región de solapamiento. El enlace que se forma cuando dos orbitales s solapan se denomina enlace sigma (σ). Los electrones en un enlace σ se encuentran simétricamente distribuidos alrededor de un eje internuclear.  Durante la formación del enlace, los dos orbitales se acercan uno a otro y comienzan a solapar, liberándose energía a medida que el electrón de cada átomo es atraído por la carga positiva del núcleo del otro átomo. Cuanto mayor sea el solapamiento, mayor será el desprendimiento de energía y, por tanto, menor será la energía del Orbital Molecular (OM). Si el proceso de aproximación de los átomos continua, los núcleos atómicos pueden llegar a repelerse mutuamente, lo cual hace que la energía del sistema aumente. Esto significa que la máxima estabilidad (mínima energía) se alcanza cuando los núcleos se encuentran a una distancia determinada que se conoce con el nombre de longitud de enlace.

El enlace en la molécula de metano.
El hidrocarburo saturado más simple es el metano, cuya fórmula molecular es CH4. Desde el siglo pasado se había demostrado mediante hechos experimentales que la forma del metano era tetraédrica. Sin embargo, la justificación de esta estructura no pudo hallarse hasta el desarrollo de la teoría mecanocuántica entre los años 1920 y 1930.  La configuración electrónica del átomo de carbono es 1s2 2s2 2p2. El contorno de densidad electrónica de los orbitales s y p se indica en la siguiente figura:


Un átomo de carbono en su estado fundamental tendría dos electrones desapareados, tal y como se indica a continuación:


Como el átomo de carbono en su estado fundamental sólo contiene dos electrones desapareados se debería esperar que, en lugar de formar CH4, el carbono se uniera sólo a dos átomos de hidrógeno y formara un compuesto de fórmula CH2, dejando vacío un orbital 2p. El CH2 es una especie química conocida, llamada carbeno, pero es una sustancia muy reactiva y de tiempo de vida media muy corto.  Por adición de 96 kcal/mol de energía a un átomo de carbono, uno de los electrones 2s puede promocionarse hasta alcanzar el orbital vacío 2p, dando lugar a la configuración electrónica indicada a continuación:


Al promocionar un electrón desde el orbital 2s al 2p el átomo de carbono tiene disponibles cuatro electrones para formar cuatro enlaces covalentes y de esta forma puede conseguir la configuración electrónica de gas noble.  La formación de un enlace covalente produce un descenso de energía en el sistema, que en el caso de un enlace C-H se cifra en 87 kcal/mol. Por tanto, la formación de dos enlaces covalentes más en el átomo de carbono provocará un descenso de 174 kcal/mol de energía (2 x 87 kcal/mol), que compensa sobradamente los 96 kcal/mol que se requieren para promover al átomo de carbono desde el estado fundamental al estado excitado.  Este razonamiento explica por qué el átomo de carbono tiende a ser tetravalente en lugar de divalente. Sin embargo, no explica la forma tetraédrica de la molécula de metano.
El sistema de un orbital 2s y tres orbitales 2p, mutuamente perpendiculares, es una solución satisfactoria aproximada para la ecuación de Schroedinger para la capa n=2, pero pueden formularse combinaciones lineales de estos cuatro orbitales que también sean soluciones satisfactorias para la ecuación de Schroedinger.  Matemáticamente está permitido combinar los orbitales 2s y 2p de cualquier modo, con la condición de que en la formación de los cuatro orbitales nuevos se empleen exactamente un orbital s y tres p. Una forma de llevar a cabo tal combinación consiste en formar cuatro orbitales nuevos, cada uno de los cuales tiene ¼ de carácter s y ¾ de carácter p. Los cuatro orbitales híbridos son entonces equivalentes entre sí y, teniendo en cuenta que contienen triple carácter p que s, se les denomina híbridos sp3.  El contorno de densidad electrónica de un orbital sp3 presenta dos lóbulos, como un orbital p, pero en este caso los lóbulos son bastante desiguales en tamaño.
Para formar un enlace fuerte es necesario que los electrones estén situados entre los núcleos de los átomos. Un orbital sp3 puede situar mucha más densidad electrónica, en una dirección determinada, que la que sitúa un orbital s o un orbital p.  Por consiguiente, un enlace covalente que se forme con la participación de un orbital sp3 del átomo de carbono será más fuerte que un enlace covalente en el que participe un orbital p o un orbital s.  La energía de un enlace covalente que se forma mediante el solapamiento entre el orbital híbrido sp3 del carbono y el orbital 1s del hidrógeno es de 103 kcal/mol, mientras que los enlaces covalentes correspondientes C2p-H1s y C2s-H1s tienen una energía de 60 kcal/mol y 80 kcal/mol.  Los cuatro orbitales híbridos sp3 del carbono se sitúan en direcciones tales que forman entre ellos ángulos de 109.5°, como si se dirigieran hacia los  vértices de un tetraedro regular:


Los orbitales híbridos sp3 dan la mejor explicación para la formación de enlaces en el metano porque el átomo de carbono tiene la misma energía, tanto si está hibridizado como si no lo está, pero la configuración hibridizada puede formar enlaces  más fuertes. Además, la geometría tetraédrica permite alejar lo máximo posible a los núcleos de los cuatro átomos de hidrógeno, lográndose de esta forma disminuir las interacciones desestabilizantes que se establecen entre los cuatro núcleos cargados positivamente.  En conclusión, la participación de los orbítales híbridos sp3 permite explicar la forma de la molécula del metano, que es un tetraedro perfecto con distancias de enlace C-H de 1.09 Å y ángulos de enlace de 109.5°, tal y como se indica en las figuras que se dan a continuación:



La molécula de etano.
El etano es un hidrocarburo de fórmula molecular C2H6. Su estructura se puede explicar admitiendo que los dos átomos de carbono presentan hibridación sp3, de manera que el enlace covalente C-C se forma por solapamiento de dos orbitales híbridos sp3, uno de cada átomo de carbono, quedando en cada uno otros tres orbitales híbridos para solapar con los orbitales s de los seis átomos de hidrógeno.  Como en el caso del metano cada átomo de carbono se sitúa en el centro de un tetraedro cuyos vértices lo ocupan ahora tres átomos de hidrógeno y el otro carbono.



La molécula de etileno.
El concepto de hibridación también puede explicar la formación de enlaces múltiples en las moléculas orgánicas. Por ejemplo, el etileno, cuya fórmula molecular es C2H4, es una molécula plana con una longitud de enlace C-C de 1.33 Å, inferior a la longitud del enlace simple C-C del etano, que es de 1.54 Å. La longitud del enlace C-H en el etileno es de 1.08 Å, también ligeramente menor que el enlace C-H del etano, que es de 1.09 Å. Los ángulos de enlace de C-C-H y H-C-H en el etileno son de 121.7° y 116.6° respectivamente.




Estas distancias y ángulos de enlace se pueden explicar admitiendo que los dos átomos de carbono que forman el enlace C-C de la molécula de etileno presentan una hibridación sp2. Estos orbitales híbridos se forman por combinación de un orbital 2s con dos orbitales 2p, En este proceso se generan tres orbitales híbridos sp2 que contienen un 33.33% de carácter s y un 66.66% de carácter p. Los tres orbitales híbridos sp2 son idénticos y se encuentran en un plano formando un ángulo de 120° entre ellos. El orbital p libre, que no se ha empleado en el proceso de hibridación, se coloca perpendicular al plano que contiene a los tres híbridos sp2. En la siguiente figura se indica la forma y orientación de los orbitales híbridos sp2.


A continuación, se representa la configuración orbitálica de un átomo de carbono sp2. La visión frontal permite apreciar la colocación perpendicular del orbital atómico p con respecto del plano que contiene a los tres orbitales híbridos sp2.


Cuando dos átomos de carbono con hibridación sp2 se solapan frontalmente se forma un enlace sigma (σ) carbono-carbono, quedando sobre cada átomo de carbono dos orbitales híbridos sp2 y un orbital 2p no hibridizado. En la molécula de etileno los orbitales híbridos sp2 que no se han empleado en la construcción del enlace C-C se solapan con los orbitales 1s de cuatro átomos de hidrógeno dando lugar a cuatro enlaces σ Csp2-H1s.  Sobre cada átomo de carbono queda un orbital 2p, que consta de dos lóbulos a los que se les asigna el signo + y el signo -. Estos signos no representan cargas sino el signo algebraico de la función de onda en las dos regiones o lóbulos que constituyen el orbital atómico p.  Para que los orbitales 2p se puedan solapar en la molécula de etileno se tienen que orientar paralelamente entre sí y perpendicularmente a la estructura de los enlaces σ. Para que esto ocurra, la estructura de los enlaces σ tiene que ser coplanar: los seis núcleos atómicos implicados en el enlace de la molécula de etileno tienen que estar situados en el mismo plano. En este caso, los dos orbitales p se sitúan paralelamente y están lo suficientemente cerca para poderse solapar.
La longitud del enlace C-H es menor en el etileno que en el etano por dos razones: Primera, el enlace σ del etileno está formado por el solapamiento de dos orbitales sp2 del carbono (33.3% de carácter s), mientras que el enlace σ en el etano está formado por el solapamiento de dos orbitales sp3 (25% de carácter s). Segunda, el solapamiento de los orbitales p que forman el enlace π aproxima a los dos átomos de carbono.  En la siguiente figura se indican los tres tipos de enlaces covalentes de la molécula de etileno: un enlace σ (solapamiento Csp2-Csp2), un enlace σ (solapamiento Csp2-H1s) y el enlace π (solapamiento Cp-Cp):



La molécula de acetileno.
El acetileno es un gas de fórmula molecular C2H2. La molécula de acetileno es lineal que se puede explicar admitiendo que cada átomo de carbono presenta una hibridación sp. Los orbitales híbridos sp se forman por combinación de un orbital atómico 2s con un orbital atómico 2p, quedando sin hibridizar los otros dos orbitales atómicos 2p. Para disminuir la repulsión entre los electrones de los orbitales híbridos sp éstos se colocan en el mismo plano formando entre ellos un ángulo de 180°, tal y como se indica en la siguiente figura:


Los dos orbitales atómicos 2p que no se han empleado en el proceso de hibridación se colocan perpendiculares entre sí y perpendiculares al sistema de orbitales híbridos sp, tal y como se indica en la figura que se da a continuación:


El solapamiento frontal de dos orbitales híbridos sp genera el enlace σ C-C de la molécula de acetileno. Los dos orbitales híbridos sp restantes se solapan con los orbitales 1s de dos átomos de hidrógeno para dar lugar a dos enlaces covalentes C-H de tipo σ. El sistema de orbitales σ de la molécula de acetileno se indica a continuación:


Sobre cada átomo de carbono quedan dos orbitales atómicos p que se solapan lateralmente para dar lugar a dos enlaces de tipo π:





Los tres tipos de enlaces que constituyen la molécula de acetileno, enlace σ (solapamiento Csp-Csp), enlace σ (solapamiento Csp-H1s) y enlaces π (solapamiento Cp-Cp) se representan en la figura que se da a continuación:


1 comentario:

Tipos de reacciones orgánicas